Model-independent counting of molecules in single-molecule localization microscopy

نویسندگان

  • Gerhard Hummer
  • Franziska Fricke
  • Mike Heilemann
چکیده

Most biomolecular processes rely on tightly controlled stoichiometries, from the formation of molecular assemblies to cellular signaling. Single-molecule localization micro-scopy studies of fluorophore blinking offer a promising route to probe oligomeric states. Here we show that the distribution of the number of blinking events assumes a universal functional form, independent of photophysics, under relatively mild assumptions. The number of photophysical states, the kinetics of interconversion, and the fraction of active fluorophores enter as two or three constants. This essentially model-independent formulation allows us to determine molecule counts from fluorophore blinking statistics. The formulas hold even if the fluorophores have many different yet unresolved dark states, as long as there is only a single fluorescent state, or if there are different yet unresolvable fluorescent states, as long as there is only a single dark state. We demonstrate the practical applicability of this approach by quantifying the oligomerization states of membrane proteins tagged with the mEos2 fluorescent protein. We find that the model parameters, obtained by likelihood maximization, are transferable. With the counting statistics being independent of the detailed photophysics and its parameters being transferable, the method should be robust and broadly applicable to counting colocalized molecules in vivo and in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM).

We present a single molecule method for counting proteins within a diffraction-limited area when using photoactivated localization microscopy. The intrinsic blinking of photoactivatable fluorescent proteins mEos2 and Dendra2 leads to an overcounting error, which constitutes a major obstacle for their use as molecular counting tags. Here, we introduce a kinetic model to describe blinking and sho...

متن کامل

One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy

Probing the oligomeric state of abundant molecules, such as membrane proteins in intact cells, is essential, but has not been straightforward. We address this challenge with a simple counting strategy that is capable of reporting the oligomeric state of dense, membrane-bound protein complexes. It is based on single-molecule localization microscopy to super-resolve protein structures in intact c...

متن کامل

Intracellular single molecule microscopy reveals two kinetically distinct pathways for microRNA assembly.

MicroRNAs (miRNAs) associate with components of the RNA-induced silencing complex (RISC) to assemble on mRNA targets and regulate protein expression in higher eukaryotes. Here we describe a method for the intracellular single-molecule, high-resolution localization and counting (iSHiRLoC) of miRNAs. Microinjected, singly fluorophore-labelled, functional miRNAs were tracked within diffusing parti...

متن کامل

Nanometer-localized multiple single-molecule fluorescence microscopy.

Fitting the image of a single molecule to the point spread function of an optical system greatly improves the precision with which single molecules can be located. Centroid localization with nanometer precision has been achieved when a sufficient number of photons are collected. However, if multiple single molecules reside within a diffraction-limited spot, this localization approach does not w...

متن کامل

SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy

Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe's resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2016